
1

AIEDITOR

NEURAL NETWORKS

EDITOR

DDEV TECH

2

Summary

 Currently artificial intelligence is being used in major companies such as Amazon

or Google and will soon be used to extend to our personal environment. Scientists from all

over the world try to understand the functioning of our prodigious brains. Artificial

intelligence is not easy to understand, and teaching people to use it is not a simple task.

Therefore, in this project I have proposed to develop a simulator and at the same time

editor of artificial intelligence with a graphical interface that facilitates to develop, to

understand and to innovate in this technological sector.

Keywords:

 Artificial intelligence, future, algorithms, neural network, autonomous learning,

programming, AI, machine learning, deep learning, education

3

Contents

1 Introduction .. 4

2 Methodology ... 5

 2.1 Computer Tools .. 5

 2.2 Mathematical tools .. 5

 2.3 Programming tools ... 6

3 The Neural network editor ... 6

 3.1 Connection to the WEB server ... 7

 3.2 Red neuronal ... 8

 3.3 Artificial Intelligence Algorithms .. 10

 3.3.1 Initialize ... 11

 3.3.2 Feed Forward .. 11

 3.3.3 Back Propagation... 13

 3.3.4 Training ... 17

 3.3.5 optimization Algorithms ... 18

 3.4 Graphical interface ... 21

 3.4.1 Creation Window .. 22

 3.4.2 Import Window .. 22

 3.4.3 Learning Window .. 22

 3.4.4 Simulations ... 22

 3.5 Rendering and updating process ... 23

 3.6 Storage of neural networks .. 23

4 Practices .. 24

5 Conclusion ... 26

1 Annex I: Links of interest ... 28

2 Annex II: Images of the network editor .. 29

4

1 Introduction

This project aims to design an artificial intelligence editor with which to create, edit,

adjust and visualize different neural networks. The different algorithms, graphical interfaces

and internal mechanisms will be created using Java1 As the main programming language.

The program can be downloaded at the following Web address:

https://www.retopall.com. In addition, you will see a trailer of the application on the link:

https://www.youtube.com/watch?v=W1fH_xmx6Xg

The main concepts used of artificial intelligence in the program and the internal

functioning of this will be explained. Basic mathematical and programming skills will be

recommended.

Figure 1: Red neuronal 784x20x20x10

1 Programming language widely used by companies and currently owned by the Oracle company

5

2 Methodology

The following tools are necessary for the elaboration of the program:

2.1 Computer Tools

 I have worked with a computer with the following specifications for the elaboration

of the program:

 • Windows 10 operating system

 • Intel Core i7 8700 processor-executing algorithms

 • Nvidia GeForce 1070 graphics card-Network processing graphical

environment

 • 16GB RAM Memory DDR4-Storing dynamic program variables

 • SSD disk-speed up the storage of neural networks on your computer and

reading these.

 The program does not use any external library because all the algorithms are

written manually.

2.2 Mathematical tools

Neural networks use algorithms of great complexity, so I will use mathematical

analysis tools (derivatives, partial derivatives, gradient descent, regression) and linear

algebra (matrices, vectors, function analysis).

 The tools mentioned above will be implemented in the program with their

respective methods and functionalities.

6

2.3 Programming tools

An IDE will be used (Integrated Development Environment) to Program The

algorithms and the graphical interface of the application. Use Eclipse Photon.2 As stated

above, the language used will be Java for algorithms and is widely used in large companies

such as Google, Spotify, Netflix or Amazon.

Java, is the language most used by programmers, is being used for artificial

intelligence and can integrate Tensorflow3, a library developed by Google and more used to

create algorithms and intelligent networks.

3 The Neural network editor

 The Application object of this project can be downloaded for Windows, MacOSX or

Linux. The program does not use external libraries, that is to say, everything is programmed

manually without any added ease. The application has a total of 16280 lines of code and 81

classes, which makes it a large-scale project.

The application structure is as follows:

 1. Connection to the Web server by means of HTTP requests

 2. Functioning of a neural network

 3. Artificial Intelligence algorithms

 4. Graphical interface to adjust and manipulate the neural network

 5. Graphic rendering process4 and multitasking5

 6. Storage and reading of neural networks

2 Application developed by Eclipse Foundation. Downloadable at: https://www.eclipse.org/
3 Open Source Library for automatic learning and used to train neural networks, detect patterns and other functions
4 Render (render) is a function widely used by programmers to update on-screen graphics
5 Programs that want to perform multiple runs at the same time must have a series of "threads" running sequentially

7

3.1 Connecting to the WEB server

 The application is synchronized with the Web page mentioned above

(www.retopall.com)

 To log in you need to have a user license. To verify it requires running a request to

the PHP Web server6 For this to make another request to the MySQL database7.

 Passwords are stored securely in the database by using the MD5 encryption

method.8 The bytes of the password we want to encrypt are digested and that set of bytes

becomes a string of numbers and letters.

To send the request to the Web server A URL connection is created and the request

is carried out with the GET method9.

 The PHP code will produce a Boolean response10 Depending on whether the data

is correct. If the answer is true, the neural network editor will proceed to open. The request

to the server is shown in the following code:

The graphical interface for logging into the application is shown in Figure 2

6 Web programming language run on the server generally to run requests to a database securely
7 Database management System
8 128-bit cryptographic reduction algorithm
9 Request to a Web server in which the parameters that are given to this are visible
10 False or True Value (0 or 1)

8

Figure 2: Logon window

3.2 Red neuronal

A neural network is a computational model used for learning By means of only

numerical relationships.

 These networks are formed by layers, neurons and weights mainly. The weights

are the connections between neurons of a previous layer with neurons of the posterior one.

Weights and neurons store a decimal value.

As for the layers, there is an input layer, another one of output, and a series of

hidden layers.

 The input layer adds the values that you want to leave. For example, pixels in an

9

image to be scanned on the network would be input values. Depending on the color of the

pixel, input neurons would be assigned input values in the range [0.1]. The neurons of the

output layer are the values of the solutions and predictions of the neural network.

 Finally, we would have the hidden layers that improve the intelligence of the neural

network. For network training, the values of the weights will be edited to minimize the error

of the output neurons. The values of the neurons will depend on the weights, except for the

input that will depend on the given stimuli.

 The structure of the neural network can be seen in the following graph. With a

neural network that has 3 layers with an entry layer of four neurons, a hidden layer of 5

neurons and an output layer of a single neuron. Next-layer neurons are related to a series

of weights.

To train the neural network we will need a set of data to learn from. In the proposed

example of the input pixels, we need a set of images in which we will take the pixels to

represent them as input value.

 Next we will have to calculate the value of the following neurons based on the

input values. This will be achieved with the algorithm feed-forward or forward propagation.

This method will provide us with delimited output values between 0 and 1, which

correspond to the certainty that the neural network will have in each output neuron.

 We must bear in mind that the input values will always be the stimuli or

information that we want the neural network to analyze to predict and produce a series of

results in the output layer.

10

 When the neural network is not trained, the output values will be virtually random.

However, by carrying out the method back-propagation Or backward propagation, the

neural network will calculate the error you have had on the output values compared to the

ones you want and execute the gradient descent11 To lessen the error and therefore learn.

Figure 3: Minimization of error with gradient descent algorithm [10]

3.3 Artificial Intelligence Algorithms

 The neural network will have two main functions, which will be the

backpropagation and the feed-forward function.

 The first one will be used to minimize the neural network error and the second to

update the neural network. These two functions are synchronized by the learning function

that will iterate over all the data sets. It will update the neural network, calculate the error,

11 It is one of the most popular optimization algorithms in automatic learning, particularly for its extensive use in the field of neural
networks. Gradient descent It is a general minimization method for any function f. The original version is considered slow but versatile,
especially for case functions Multi-dimensional.

11

and eventually execute the back-propagation function.

3.3.1 Initialize

 When creating the neural network, all weights and neurons will be initialized. The

values of the weights will be created pseudo with a normal distribution generally in the

interval [-1.1].

 𝑟𝑎𝑛𝑑. 𝑛𝑒𝑥𝑡𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛() ∗ 2 − 1;

3.3.2 Feed Forward

 The feed-forward function is the one dedicated to updating the neural network.

The input values will reach the output values. It will depend on the values assigned to all

weights. The propagation is forward as it runs from the first layers to the last. Below are the

terms used to run the feed-forward. The number of layers that the neural network has is

the input, output, and hidden layer.

 𝑎𝑛
𝑙 , 𝑎𝑚

𝑙 : Are the values of a neuron in which 𝑙 is the layer and 𝑚,𝑛 It's the

positions on that layer.

𝑐: These are the connections with the anterior layer to this neuron.

𝑤𝑛,𝑘
𝑙 : Weight connecting neuron 𝑛 of the layer 𝑙 With the neuron 𝑚 Of the next.

𝜎(𝑥): Activation function to be explained to After

𝑏𝑛
𝑙 : Additional parameter also to adjust, which brings more intelligence to Neural

network. In terms of programming it is called 𝑏𝑖𝑎𝑠.

Each neuron will be updated in the following way:

 𝑎𝑚
𝑙+1 = 𝜎(∑𝑐

𝑛=0 𝑤𝑚,𝑛
𝑙 𝑎𝑛

𝑙 + 𝑏𝑛
𝑙)

The complete neural network update will be achieved in the following way. All layers will

be traversed from the entrance to the exit where 𝑙 Be 0,1,2, . ..

12

[

𝑎0

𝑙+1

𝑎1
𝑙+1

. . .
𝑎𝑚

𝑙+1

]

= 𝜎

(

[

𝑤0,0

𝑙 𝑤0,1
𝑙 𝑤0,2

𝑙 . . . 𝑤0,𝑛
𝑙

𝑤1,0
𝑙 𝑤1,1

𝑙 𝑤1,2
𝑙 . . . 𝑤1,𝑛

𝑙

. ⋱ . . .
𝑤𝑚,0

𝑙 𝑤𝑚,1
𝑙 𝑤𝑚,2

𝑙 . . . 𝑤𝑚,𝑛
𝑙

]

[

𝑎0

𝑙

𝑎1
𝑙

. . .
𝑎𝑛

𝑙

]

+

[

𝑏0

𝑙

𝑏1
𝑙

. . .
𝑏𝑛

𝑙

]

)

 Neurons can be delimited by activating functions. These functions, in this case

denoted by the Greek symbol Sigma (𝜎), may vary depending on the purpose and use that

you want to give to the neural network. There are many activation functions, but the main

features I will use in my program are the Sigmoid and RELU functions.

 • RELU function

This function is very useful because, if the activation is negative for a neuron, you

will never get to activate that neuron, ie, it will not have a positive value. This function is

shown below:

 𝜎(𝑥) = {
0 𝑠𝑖 𝑥 < 0

𝑥 𝑠𝑖 𝑥 > 0

 • Sigmoid function

The sigmoid function is very sensitive to the values very close to 𝑥 = 0. As we move

away, the changes become indifferent as it has horizontal asymptotes in 𝑦 = 0 And 𝑦 =

1.

 lim
𝑥→∞

𝜎(𝑥) = 1 lim
𝑥→−∞

𝜎(𝑥) = 0

 𝜎(𝑥) =
1

1+𝑒−𝑥

 Graphical representation of sigmoid function:

There are also other activations like the Hipérbolica function (Tanh) 𝜎(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

13

3.3.3 Back Propagation

 The main objective of the backward propagation is the modification of each and

every one of the weights of the network so that the neural network learns.

An algorithm will be carried out in which, when knowing the output and the desired

values, the error will be calculated.

 By traversing the set of data to be learned, each datum will have its desired value

from the output layer. Then, with the gradient descent method, the neural network error

will decrease. Each and every one of the weights will be traversed, their variation will be

calculated depending on the total error and these values will be modified in order to

decrease the function of cost 𝐸(𝑥).

 The following steps will be followed for the reduction of this cost:

Calculation of output layer error

 To carry out the calculation of the neural network error The error of the output

layer will be determined, in other words, the neurons of the last layer will be traversed and

the error will be calculated by adding all the squares of the differences between the desired

value and the real one obtained in the Neu Rona out.

𝑥𝑛: The desired value that the neuron should have in the position 𝑛 of the output

layer

𝑎𝑛: The actual value obtained in the neuron in the position 𝑛 of the layer of exit

14

𝑘: Number of data sets to train.

 𝐸𝑡𝑜𝑡𝑎𝑙 =
1

𝑘
∑𝑎=0 (𝑥𝑛 − 𝑎𝑛)2

B) Minimizing the error of the output layer

 To minimize the error we will have to calculate how much decreases this with

respect to each weight of the neural network. This will be done by calculating the partial

derivative of the error with respect to each weight.

The notation 𝑜𝑢𝑡 Represents the value of the neuron with the activation function

applied. The notation 𝑛𝑒𝑡 It represents the value of the neuron without applying the

activation function.

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡(𝑎𝑛
𝑙)

𝜕𝑜𝑢𝑡(𝑎𝑛
𝑙)

𝜕𝑛𝑒𝑡(𝑎𝑛
𝑙)

𝜕𝑛𝑒𝑡(𝑎𝑛
𝑙)

𝜕𝑤𝑚,𝑛

By solving the derivatives you get:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛
= −(𝑥𝑛

𝑙 − 𝑎𝑛
𝑙)𝜎′(𝑎𝑛

𝑙)𝑎𝑚
𝑙−1

This formula can be used only in the weights that connect the output layer with the last

hidden, as the other weights depend on the variation of the above updated.

The derivative of the activation function 𝜎′ In the case of the sigmoid function it

will be:

 𝜎(𝑥) =
1

1+𝑒−𝑥

 𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

In the calculation formula of partial error derivative it is observed that it depends on the

anterior neuron. We can define a new variable 𝛿 That will be the sensitivity of a single

neuron repecto to the total error.

15

Use 𝛿 To calculate the sensitivity of the error with respect to a weight that will

depend only on a neuron 𝑎𝑛
𝑙

 𝛿𝑛
𝑙 = −(𝑥𝑛

𝑙 − 𝑎𝑛
𝑙)𝜎′(𝑎𝑛

𝑙)

Also, if we want to change the bias The network, you should minimize the error with respect

to each
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑏𝑚
𝑙

C) minimizing hidden layer error

 Knowing the variation necessary to minimize the error of the weights of the output

layer, you can find the necessary variations for the rest of weights. However these,

depending on the previous weights, will have a different calculation. This is why the

backward propagation is from the output layer to that of input and runs in the opposite

direction of the feed-forward algorithm.

 𝑘: Run all of the weights of the layer before the weight to be adjusted.

𝑙 : The layer of neurons that is connected to the weight to be adjusted and the

weights of the next layer (already up-to-date).

 We will then proceed to the calculation of the other weights that are not connected

to the output layer.

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛
= (∑𝑘=0 (𝛿𝑘

𝑙𝑤𝑚,𝑘
𝑙+1))𝜎′𝑎𝑛

𝑙−1

16

D) Modifying the weights and bias of the network

 By having the optimal variation of a weight, to minimize the error we'll update the

value of the weight depending on its variation (
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛
).

 Call 𝜂 to the learning coefficient. It is used to not lower the error drastically

because there is another type of data and the network needs to provide some tolerance to

all of them. The error obtained only depends on a single datum.

There are several ways to update weights:

 • Stochastic gradient descent: Updates each weight for each new data

 𝑤𝑚,𝑛
𝑙 = 𝑤𝑚,𝑛

𝑙 − 𝜂
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛

 • Batch descent: In each round of the entire data set, the weights are

adjusted. 𝑡: Data Set Size

 𝑤𝑚,𝑛
𝑙 = 𝑤𝑚,𝑛

𝑙 − 𝜂
1

𝑡
∑𝑡

𝑡=0
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛

 • Gradient decrease by mini-Batch descent:

It is the intermediate algorithm between the previous ones, in which the weights

are updated after a certain number of iterations on the dataset. It is the optimal algorithm

among those described, because it does not consume a lot of memory to the processor but

at the same time it is fast and therefore efficient.

𝑠 Mini size or mini-batch (20-100).

17

 𝑤𝑚,𝑛
𝑙 = 𝑤𝑚,𝑛

𝑙 − 𝜂
1

𝑠
∑𝑠

𝑠=0
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛

 • Bias Modification

𝛽: Bias learning coefficient.

As with weights the bias will also be modified as follows:

 𝑏𝑚
𝑙 = 𝑏𝑚

𝑙 − 𝛽
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑏𝑚
𝑙

 These algorithms will be executed on each weight and so all of them will be

adjusted and the total network error decreases. You can see this decrease in image 4

Figure 4: Graph of neural network error growth

3.3.4 Training

18

 To carry out a complete training, the following variables will be required:

 • Data set: It will be an array with the images and therefore the pixels of all

the images.

 Iterations 𝑖 The number of data set to learn from.

 Times 𝑒𝑝𝑜𝑐ℎ𝑠 The number of times the data set will be iterated for learning.

 They will go through every epoch. In each of these, it will go through the whole

data set if the gradient descent is stochastic.

The pixel colors of the images will be scanned and mapped in the first layer as input

values. Then it will run the function feed-forward And with the output values obtained the

error will be calculated. Then it will take place the back-propagation To decrease the error

or cost function 𝐶(𝑥) and update the weights of the neural network.

3.3.5 Optimization algorithms

 The gradient decrease will seek to decrease the error, but will not get to the

absolute minimum in which the learning of the neural network has been maximized with

the data sets. In addition, it is not the fastest way to reach a minimum since the learning

coefficient is constant so there will always be a margin of error in the decrease of the cost.

Therefore, optimization algorithms will be used [Figure 5].

19

Figure 5: Optimization algorithms [11]

There are many optimization algorithms:

 Momentum

 It can be achieved to reduce the large oscillations that presents the descent of

stochastic gradient in the search of a local minimum. Accelerates the descent in the right

direction and reduces acceleration in all other directions [Figure 6].

𝑣(𝑡): Speed in a specific time 𝑡

𝛾: Term of the moment. Depending on whether you want to advance more but with

fewer oscillations or vice versa. It's usually 0.9.

 𝑣(𝑡) = 𝛾𝑣(𝑡 − 1) − 𝜂
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛

When we calculate 𝑣(𝑡) We will proceed, as explained above, to update the weights but

with 𝑣(𝑡). We will be able to use the descent by mini-groups if we proceed to it.

 𝑤𝑚,𝑛
𝑙 = 𝑤𝑚,𝑛

𝑙 − 𝑣(𝑡)

20

Figure 6: Momentum en contraposición a SGD [12]

 RMSProp

 It also tries to decrease the oscillations of the directions that do not point to the

minimum. 𝛽: The value of the moment. is usually 0.9

 𝑣𝑑𝑤 = 𝛽𝑣𝑑𝑤 + (1 − 𝛽)𝑑𝑤2

When updating weights, the following must be done to vary the learning coefficient:

 𝑤𝑚,𝑛
𝑙 = 𝑤𝑚,𝑛

𝑙 − 𝜂
𝑑𝑤

√𝑣𝑑𝑏𝜖

To prevent you from getting a very high speed descent and passing the minimum, you use

𝜖, with positive values relatively close to 0.

 Adagram

 Gradient optimization algorithm, which adapts the learning coefficient with some

parameters applying small variations to this.

 𝑔𝑡 — is the variation of a given weight to decrease the error. The term 𝑡

Represents when the weight has been updated. Therefore, with this notation the stochastic

gradient descent would be:

 𝑔𝑡 =
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑚,𝑛
⟹ 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑔𝑡

The Adagram optimization algorithm will try to modify the learning coefficient depending

on the previous gradients 𝑔𝑡 Where 𝑡 It represents the order of execution of those

21

gradients.

 𝐺𝑡: It's a diagonal matrix where the position 𝑖, 𝑖 Is the sum of the squares of the

weight gradients that we want to change to the last previous change 𝑡.

𝜖: Term that prevents division by 0. is a very low number as 10−8.

You will have to calculate the vector product between the matrices 𝐺𝑡 And 𝑔𝑡 As

shown below:

 𝑤𝑚,𝑛
𝑙 = 𝑤𝑚,𝑛

𝑙 −
𝜂

√𝐺𝑡+𝜖
⊙ 𝑔𝑡

The main benefit of the ADAGRAM algorithm is the elimination of the need to manually

change the learning coefficient.

 Adadelta, ADAM, Nadam y Nesterov Accelerated Gradient They are other examples

of gradient-lowering optimization algorithms. However there are many more and variants

of those mentioned.

3.4 Graphic interface

 The application has a sophisticated interface to simplify the program controls and

functions described below. It also uses the integrated Java graphics library called Swing.

Text fields, buttons, editors and menus have been created with a simple and useful design

and always running smoothly.

 The technical Manual of the operation of the application and the first steps can be

obtained in the following link: https://docs.google.com/document/d/1RCckXaYssdckRxK-

5rSRjsPZ1_A6wLahVYPceHjJPkk/edit?usp=sharing.

22

Figure 7: Windows of the Neural network editor

3.4.1 Creation window

 In the upper left side you can see a neural network editor in which the user can

visually configure a neural net. Offers the ability to create by command or from the data

sets

3.4.2 Import window

 In the upper central zone you can see a window in which you can quickly import

data sets to train the network Neuronal. Neural networks can be modified by editing the

learning rhythm, iterations and activations.

3.4.3 Learning window

 In the lower left pane you can view the different sets of data, in this case to train a

neural network with digits. This is the training panel. You can select a single specimen to

train or all the specimens. It offers the possibility to change the size of the images and to

configure them.

3.4.4 Simulations

 There is also a window to test different simulations and see the results, accuracy

and performance of the neural network. The numbering of each formula is composed of

two numbers: that of the section, within which is the formula, and the number that occupies

23

the formula within this section. (Can be numbered in other ways, of course).

3.5 rendering and updating process

 In addition to the entire interface and all the algorithms it uses, it is also possible

to visualize and understand the behavior of the neural network. To do this, it integrates a

graphic engine programmed from scratch to render the neural network, effects, texts...

 All the algorithms are executed in different threads of execution to prevent the

decrease of the performance of the application and at the same time to manage several

networks, trainings and other tasks that Requireren great computational performance.

 This will be related to the number of objects to render. The larger the neural

network, the more work it will cost the computer to maintain the fluidity of the program.

Therefore, if the FPS12 Decrease too much, the Program Soda rate. The application ceases

to guarantee a continuous flow when the 10 million objects to be updated and the 100,000

to render are exceeded.

3.6 Neural network Storage

 When training a neural network, you have the tool to save that neural network on

a computer so that it can later be used by other people and/or by the user.

12 Frames For second Or graphics that you can render a computer in a second

24

Figure 8: Basic Neural network

 All learning, adjustments, and all neurons, weights, layers, etc. will be saved. The

neural network will be serializable to be stored in object form. In addition, to ensure data

security, everything will be dynamically encrypted during program execution

4 Practices

 In addition to programming the algorithms and designing the application I have

been taking advantage of it creating different intelligent networks and evaluándo their

performance. I've developed a neural network ready to recognize digits and letters written

manually.

 The images used to train the network are from 28x28 pixels passed to black and

white. Therefore, the number of neurons in the input layer will be 784 neurons. The output

neurons will be digits from 0 to 9. I've been varying the hidden layers and finally managed

to get the best performance with a 784x20x20x10 network and it worked with a recognition

accuracy of 99%. The network has 16280 pesos to modify in the training.

25

In order to analyze the performance of the network, I have implemented in the

program a library that I have programmed in Java and that includes techniques of

mathematical analysis, representation of functions, matrices and other tools. You can

download the application and see the source code in

Https://github.com/dDevTech/MathLibrary. The cost function of the neural network can be

viewed in Figure 4. The polynomial function is the function of the error with the regression

tool applied.

With what I have come to learn from artificial intelligence with this project I have

created a simulator of autonomous cars using neural networks, but this time without back-

propagation and with learning of effort and in particular with genetic algorithms. You can

see a demo of the simulator in: https://www.youtube.com/watch?v=aC7Euu4s66A

The program is written in C# with the Unity 3d graphic engine [Figure 9].

Figure 9:3d self-contained car simulator

https://www.youtube.com/watch?v=aC7Euu4s66A

26

5 Conclusion

 Thanks to this application I have been able to know in depth the functioning of the

neural networks, as well as being able to use it for other purposes and applications. For

example to genetic algorithms. I have also observed that the fastest form of learning for

numbers is through minibatches, with a low learning coefficient (0.1-0.2) and with the

sigmoid activation function.

 The application is available on my website so any interested person can download

it. I am currently developing, thanks to the knowledge learned with this project, other

applications of artificial intelligence using genetic algorithms and other models of neural

networks as Adagram To make smarter applications. However, I continue to develop this

application with new features so that anyone can take advantage AIEditor .

Thanks

 This project could not have been carried out without the support of some people

who have helped me in my doubts and have worked hard to revise the project.

 First of all to Maria Gaspar and Irene Gutierrez for reviewing the project several

times and give me your opinion of it.

Juan Carlos Berrocal for listening to me when I explained the application without

having knowledge of programming.

Javier Martín can not forget to help me in the doubts that have arisen during the

elaboration of the project, along with Maria Gaspar.

27

References

[1] Matt Mazur Step by step propagation example URL:

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

[2] 3Blue1Brown Explaining Neural Networks URL:

https://www.youtube.com/watch?v=aircAruvnKk

list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

[3] deeplearning.ai Mini-batch gradient descent URL:

https://www.coursera.org/lecture/deep-neural-network/mini-batch-gradient-descent-

qcogH

[4] Michael Nielsen Using Neural Nets to recognize hand written digits URL:

http://neuralnetworksanddeeplearning.com/chap1.html

[5] Data Science Group Loss function and optimization algorithms URL:

https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-

demystified-bb92daff331c

[6] Toward Data Science Optimization algorithms used in Neural Networks

[7] Sebastian Ruder An overview of gradient descent optimization algorithms URL:

http://ruder.io/optimizing-gradient-descent/

[8] Diego Berrocal Artificial Intelligence Editor Figures 1, 2, 4, 7, 8 self-

28

elaboration.

[9] Diego Berrocal Autonomous car simulator in Unity 3d Self-elaboration Figure

9.

[10] Gradient Descent Figure 3

Https://www.researchgate.net/figure/Optimizacion-gradiente-de-descenso4-Este-

gradiente-es-hallado-despues-de-ejecutar-el_fig1_308783857Ir to image

[11] Optimization algorithms Figure 5 Http://ruder.io/optimizing-gradient-

descent/Ir to image

[12] Momentum Figure 6

Https://www.sciencedirect.com/science/article/pii/S1319157818300636Ir to image

Appendix

 Next I will add links of interest related to the project, its download and platforms

to view the code of applications and libraries used. In addition, I will include important

project scheduling schedules.

1 Annex I: Links of interest

29

 DDev Tech: YouTube channel where you can see the demos of the applications and

the project that I developed.

https://www.youtube.com/channel/UCwsrCNLN4xQE9OVSP5Sz2dA

 DDev Tech: Code of programming projects such as the Librerís of mathematics or

connection to the server.

https://github.com/dDevTech

 Retopall: website where I publish my projects and downloads of these.

https://retopall.com/

2 Annex II: Images of the network editor

 The following images are screenshots of the AIEditor application:

30

Figure 10: Red neuronal 784x100x100x27

Figure 11: Neural Network Training

31

Figure 12: Regression of a data set

Figure 13: Drawing numbers to test the functioning of the neural network

